

α-淀粉酶 (α-amylase, α-AL) 试剂盒说明书

(货号: BP10272W 微板法 48样 有效期: 6个月)

一、指标介绍:

淀粉酶包括α-淀粉酶(EC 3.2.1.1)和β-淀粉酶(EC 3.2.1.2)。淀粉酶催化淀粉水解生成还原糖,是生物体利用淀粉进行碳水化合物代谢的初级反应。本试剂盒采用 70° C加热钝化β-淀粉酶来检测α-淀粉酶的活力。即α-淀粉酶催化淀粉水解生成的还原糖能使 3.5-二硝基水杨酸生成棕红色得 3-氨基-5-硝基水杨酸,在 540 nm 有吸收峰;通过测定 540 nm 吸光度增加速率,计算淀粉酶活性。

二、试剂盒组成和配制:

	7-1- 7 -			
试剂组分	试剂规格	存放温度	注意事项	
提取液	液体 80mL×1 瓶	4℃保存		
试剂一	粉剂 1 瓶	4℃保存	1. 开盖前注意使粉体落入底部	
			(可手动甩一甩);	
			2. 加入 4mL 提取液, 70℃加热溶	
			解后再用;	
			3. 保存周期与试剂盒有效期相	
			同。	
试剂二	液体 14mL×1 瓶 4℃避光保存			
标准品	粉剂 1 支	4℃保存	1. 若重新做标曲,则用到该试剂;	
			2. 按照说明书中标曲制作步骤进	
			行配制;	
			3. 溶解后的标品一周内用完。	

三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

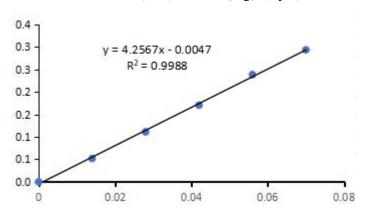
1、样本提取:

- ① 组织样本: 称取约 0.2g 组织(水分充足的样本可取 1g),加入 1mL 经预冷的 95%乙醇冰浴匀浆,4°C放置 10min;12000rpm,4°C离心 5min;弃上清,留沉淀,向沉淀中加入经预冷的 1mL 的 80%乙醇混匀,4°C放置 10min;12000rpm,4°C离心 5min;弃上清,留沉淀。再向沉淀中加入 1mL 经预冷提取液,涡旋混匀,4°C放置 10min;12000rpm,4°C离心 10min;留上清,弃沉淀。上清液置冰上待测。
- ② 细菌/培养细胞: 先收集细菌或细胞到离心管内, 离心后弃上清; 取约 500 万细菌或细胞加入 1mL 提取液超声波破碎细菌或细胞(冰浴, 功率 20%或 200W, 超声 3s, 间隔 10s, 重复 30 次); 在室温下放置提取 20min, 每隔 5min 振荡 1 次, 使其充分提取; 12000rpm, 4℃离心 10min, 上清液置冰上待测。
 - 【注】:若增加样本量,可按照细菌或细胞数量(10⁴个):提取液体积(mL)为500:1的比例进行提取。
- ③ 液体样本:直接检测。若浑浊、离心后取上清检测。

2、检测步骤:

- ① 酶标仪预热 30min 以上, 调节波长到 540 nm。
- ② 试剂一和试剂二 40℃预热 10min。
- ③ 在 EP 管中依次加入:

网址: www.bpelisa.com


试剂 (μL)	测定管	对照管				
α- 淀粉酶上清液	70	70				
70℃水浴 15min 左右,流水冷却。						
蒸馏水		70				
试剂一	70					
40℃恒温水浴中准确保温 5min。						
试剂二	140	140				
混匀, 95℃水浴 5min, 流水冷却, 取 200µL 至 96 孔板中, 540nm 处						

混匀, 95°C水浴 5min, 流水冷却, 取 200μL 至 96 孔板中, 540nm 处 读取吸光值 A, ΔA=A 测定管-A 对照管 (每个测定管需设一个对照管)。

- 【注】1. 若 ΔA 在零附近如低于 0.005,可增加样本取样质量 W,或增加样本加样量 V1(如由 70μ L 增至 100μ L,则试剂二相应减少,保持总体积不变),或延长反应时间 T(如由 5min 增至 20min),则改变后的 W 和 V1 和 T 需代入计算公式重新计算。
 - 2. 若 ΔA 值大于 1,则可减少加样体积 V1(如由 $70\mu L$ 减至 $20\mu L$,另补加 $50\mu L$ 蒸馏水),或者单独对 α 淀粉酶上清液用蒸馏水稀释后再取 $70\mu L$ 加样测定。则改变后的 V1 和稀释倍数 D 代入公式重新计算。

五、结果计算:

1、标准曲线方程: y = 4.2567x - 0.0047; x 为标准品质量 (mg) , y 为吸光值 $\triangle A$ 。

2、按照样本质量计算:

单位定义: 每克组织每分钟催化产生 1µg 麦芽糖定义为 1 个酶活力单位。

 α - 淀粉酶活性(μ g/min/g 鲜重)=[(\triangle A $_{\alpha$ -淀粉酶</sub> + 0.0047)÷4.2567×10³]]÷(W×V1÷V)÷T×D =671.2×(\triangle A $_{\alpha}$ -淀粉酶 + 0.0047)÷W×D

3、按照蛋白质含量计算:

单位定义: 每毫克组织蛋白每分钟催化产生 1µg 麦芽糖定义为 1 个酶活性单位。

 α - 淀粉酶活性(μ g/min/mg prot)=[(Δ A α - \hbar c θ + 0.0047)÷4.2567×10³]]÷(V1÷V×Cpr)÷T×D =671.2×(Δ A α - \hbar c θ + 0.0047) ÷Cpr×D

4、按细菌/细胞密度计算:

单位定义:每1万个细菌或细胞每分钟催化产生 1µg 麦芽糖定义为 1 个酶活性单位。

 α - 淀粉酶活性(μ g/min/ 10^4 cell)=[($\triangle A_{\alpha$ - $定粉酶} + 0.0047$)÷ 4.2567×10^3]÷($V1 \div V \times 500$)÷ $T \times D$ = $1.3 \times (\triangle A_{\alpha}$ -定粉酶</sup> + 0.0047)×D

5、液体样本中α-淀粉酶活性计算:

单位定义: 每毫升液体每分钟催化产生 1µg 麦芽糖定义为 1 个酶活性单位。

α- 淀粉酶活性(μg/min/mL)=[(ΔA_{α-淀粉酶} + 0.0047)÷4.2567×10³]]÷V1÷T×D

 $=671.2\times(\triangle A_{\alpha-\hat{n}+\hat{m}} + 0.0047)\times D$

V---提取液总体积, 1mL;

V1---加入反应体系中样本体积, 70μL =0.07 mL;

W---样本质量, g; T---反应时间, 5min;

500---细菌或细胞总数,500万; D---稀释倍数,未稀释即为1;

Cpr---样本蛋白质浓度,mg/mL;建议使用本公司的BCA蛋白含量测定试剂盒。

附:标准曲线制作过程:

1 向标准品 EP 管里面加入 1mL 蒸馏水(母液需在两天内用且-20℃保存),标准品母液浓度为 1mg/mL。将母液用蒸馏水稀释成六个浓度梯度的标准品,例如: 0, 0.2, 0.4, 0.6, 0.8, 1. mg/mL。也 可根据实际样本调整标准品浓度。

2 标品稀释参照表如下:

标品浓度	0	0.2	0.4	0.6	0.8	1
mg/mL	U	0.2	0.4	0.0	0.6	1
标品稀释液	0	40	90	120	1.00	200
uL	0	40	80	120	160	200
水 uL	200	160	120	80	40	0
各标准管混匀待用。						

3 依据加样表操作,根据结果,以各浓度吸光值减去 0 浓度吸光值,过 0 点制作标准曲线。

试剂名称 (μL)	标准管	0 浓度管(仅做一次)	
标品	70		
蒸馏水	70	140	
试剂二	140	140	

混匀,95 度水浴 5min, 流水冷却, 取 200μL 至 96 孔板中,540nm 处读取吸光值, △A=A 测定-0 浓度管。

网址: www.bpelisa.com